ASJ: International Journal of Advances in Herbal and Alternative Medicine (IJAHAM)

Vol. 03 (01) 21 October, 2019, Pp. 21-31

www.academiascholarlyjournal.org/ijaham/index_ijaham.htm

ISSN: 2360-9281©Academia Scholarly Journals

Indexed In: Directory of Research Journals Indexing - http://www.drji.org Also Available@; Internet-Archive@Zaku-et-al. OR; Archive.org/Zaku-et-al.

Open access @

Assessment of Indigenous Plants Used for Health Care Management in Ukum, Benue State, Nigeria

*Zaku S.S., Maiguru A.A., and Victor M.

Department of Forestry and Wild life Management, Federal University Wukari Taraba State, Nigeria.

*Corresponding Author's: E-mail Address ⊠: sszaku@yahoo.com; Phone no : +234, 08032238713

Accepted October 06, 2019

Indigenous plants for health care management are plants that are not exotic or introduced from another country but are native of the studied region and which are seen growing in an area and which are used for health care management from time immemorial for both treatment and prevention of diseases. However, the species, type, part of plant and diseases cured, its harvesting methods as well as the factors that influence the choice and use of indigenous plants for health care management are not documented in the study area, hence the present study is an attempt to fill the lacuna. A multi-stage sampling procedure with three stages was adopted for this study. First, a base line survey was conducted in February, 2018 in nine (9) districts of Ukum Local Government Area of Benue State and 335 medicinal herbs collectors were identified as follows; Tsaav 33; Lumbuv 44; Uyam 34; Borikyo 40; Mbatian 43; Aterayange 33; Ityuluv 25; Mbayenge 38 and Mbazun 45 respectively. At 30% sampling intensity, a total of 101 semi-structured questionnaires were administered to generate data for this study using the method of Diaw et al. (2002). Data collected was analyzed using descriptive statistical tools and logistic regression at $\alpha_{0.05}$. The result of the study showed that, a total of eighty-eight (88) indigenous plants used for the treatment of thirty eight (38) ailments were recorded. Also, eight (8) methods of harvesting indigenous plants for healthcare management were identified. Similarly, three factors that influenced the choice and use of indigenous plants for healthcare management in Ukum were determined. Based on the above findings, the followings are recommended; Herbal practitioners and hunters that are familiar with the names of indigenous plants used for healthcare management should disseminate such knowledge to their children, servants and other community members to prevent the loss of the knowledge. All the districts and wards in Ukum Local Government Area should be encouraged to grow indigenous plants that are used for healthcare management on their farms around their houses and as plantations to prevent them from extinction. Seedlings of indigenous plants can be raised in nurseries by Benue State Government and given free to Ukum Local Government Area communities for onward plantation on their farms and around their houses. If people of Ukum plant these seedlings on their farms and around their houses, the pressure on wild indigenous plants used for health care management will be reduced. Harvesting methods that uproot an entire plant or that takes more roots than necessary or cutting of tree tops or palmtops should be avoided as this is capable of killing the entire plants. De-barking round a tree by herbal practitioners is an attempt to kill the plant and should be avoided. However, where de-barking is to be done, debark only one portion and allow the other portion which should be de-barked when the already debarked portion has regained its part. There should be a standardized dosage in traditional medicine. This should be followed by an improved extraction method that should not be mystified.

KEYWORDS: Diseases, Health care management, Harvesting methods and Indigenous plants.

INTRODUCTION

Indigenous plants have been used in healthcare management from time immemorial for both treatment and prevention of diseases. indigenous plants contain inherent active ingredients that cures disease or relieve pain (Oladunmoye et al., 2011). The World Health Organization (2000) has estimated that 80 % of the inhabitants of the world rely mainly on traditional medicines for their primary health care needs Igoli et al. (2005) carried out an ethno botanical survey and documented one hundred and seven (107) medicinal plant species used among Tiv in Benue State. According to Gbile et al., (1999; 2010), most of the indigenous medicinal plants are going into extinction and in response to that, Monier, (2016) suggested that a sustainable conservation effort should be put in place by communities and government to safeguard these important medicinal plants. Shomkegh et al. (2016), identified a total of ninety-four (94) plant species that are utilized for medicinal purposes in selected Tiv communities (Gboko 26, Kwande 40 and Guma 28) of Benue State. Similarly, Ikyaagba, (2009) in his survey on ethno botanical potentials of plant species of University of Agrculture Makurdi wildlife park and Ikwe Games Reserve, Benue State, identified seventy-one (71) plant species belonging to thirty nine families out of which 48% were used for health care management. According to Shomkegh et al. (2016), who observed in a research carried out on medicinal plants in three communities in Tiv land (Gboko, Kwande and Guma) that indigenous plant harvesting methods were mostly destructive and this has negative implication on the species abundance. He observed that most of the harvestings or collections were from the wild with no conservation effort in place. This poses a serious threat to the practice in the study area as no plantation of medicinal plants are sighted anywhere in the study area.

METHODOLOGY

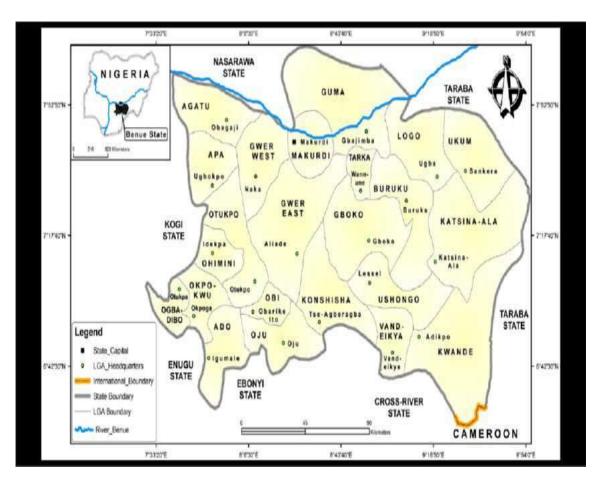
Description and location of the study area.

Ukum is located between latitude 7° 31' 0" North, 9° 37' 0" East and Longitude 7° 25' 0" North, 9° 43'0" East and shares boundaries with Wukari to the North and East, to the South by Katsina/Ala Local government area and to the West by Logo Local government area (Figures 1, 2 and 3).

Sampling procedure and sample size

A multi-stage sampling procedure with three stages was adopted for this study. First, a base line survey was conducted in February, 2018 in nine (9) districts of Ukum Local Government Area of Benue State and 335 medicinal herbs collectors were identified as follows; Tsaav 33; Lumbuv 44; Uyam 34; Borikyo 40; Mbatian 43; Aterayange 33; Ityuluv 25; Mbayenge 38 and Mbazun 45 respectively. At 30% sampling intensity, а total of 101 semi-structured questionnaires were administered to generate data for this study using the method of Diaw et al. (2002). Data collected was analyzed using descriptive statistical tools and logistic regression at $\alpha_{0.05}$.

RESULT AND DISCUSION


Demographic characteristics of Herbal Practitioners in the study area.

The result on sex of the respondents indicated that, 73 (75.3%) of the respondents are males while 24 (24.7%) are females. The result on age shows that 15 (15.5%) of the respondents falls between 1-15 years, 17 (17.5%) 16-30 years; 30 (30.9%) 31-45 years and 35 (36.1%) 45 years above respectively. The result on educational status of the respondents showed that 17(17.5%) had formal education while 80(82.5%) had informal education.

The result on state and local government of origin shows that all respondents are indigenes of Benue state (i.e. 97 respondents representing 100%). The result on duration of stay of the respondents in the study area showed that; 17(17.5%) of the respondents stayed for about 1-5 years, 20(20.6%) 6-10 years and 60(61.9%) stayed above 11 years respectively.

The result on household size of the respondents shows that, 27(27.8%) has a house hold size of 1-3; 40(41.3%) 4-8 and 30(30.9%) had a household size of 9 and above. The result on marital status of the respondent shows that, 7(7.2%) of the respondents were single; 79(81.2%) are married; 6(6.2%) were divorced and 5(5.2%) of the respondents are widows. The high number of males recorded on sex means that majority of the herbal practitioners in the study area are males this is in sharp contrast with the results of Fakeye, et al. (2009), who conducted a research on the attitude and use of herbal medicine among pregnant women in Nigeria and revealed from

23

Figure 1. Map of Benue state showing Ukum (study area).

the demographic data that most of the herbal practitioners in the study area were women, this contrast may be due to geographic locations in which these two researches were conducted.

On age, the highest number of forty five (45) years recorded of the respondents implies the active and productive age of the respondents. This means that, majority of the herbal practitioners are still active and productive. This also agrees with Shomkegh et al. (2016) who said that most herbal practitioners feel reluctant to teach their children this practice because they are in their late 40's thinking they will pass the knowledge to them in their old age. The higher number of the respondents with informal education implied that only few educated people are involved in herbal practices. The finding corroborates Ancha et al. (2015) who observed, that most herbal practitioner fails to document the indigenous medicinal plants they use due to their low level of education. The result on Local government, state and duration of stay in the study area shows that all the respondents are indigenes of both the local government and state and both of them have stayed for more than eleven years in the study area while majority are married with many of them having household size of four to eight children. This may be due to the fact that most of them are polygamous.

Indigenous plants used for healthcare management in Ukum

The result on indigenous plants used for healthcare management in Ukum shows that a total of 54 indigenous medicinal plants with life forms of 13 herbs, 21 shrubs and 56 trees belonging to 27 families were recorded. The parts of the plants mostly used includes stems, roots, leaves and barks Similarly, thirty eight (38) different ailments were found to be cured by these indigenous plants in Ukum local government area of Benue State (Tables 1 - 3). The result of the study indicated that, Annonaceae and Moraceae families provided the highest

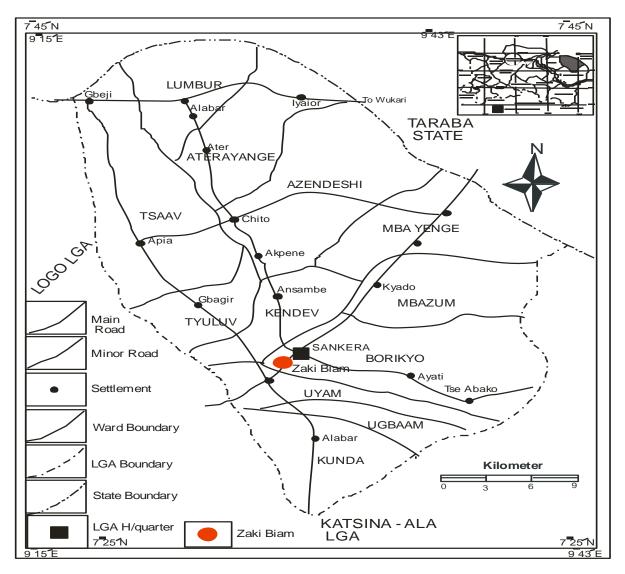


Figure 2. Map of Ukum Local Government Area.

proportion of medicinal plants 10(8.8%) and 10 (8.8%) respectively followed by Fabaceae and Euphorbiaceae at 9(7.92%) with Ficus in Moraceae family being the most dominant genus that provided indigenous plants in the study area for healthcare management. It is relevant to note that the leaves of these indigenous plants are the parts mostly used, although all the other parts of the indigenous plants play prominent roles in peoples' health care. On the part of ailments treated, Ulcer and Stroke utilized the highest number of plant species of five (5) each with Diabetes, toothache, rheumatism, recovery from

childbirth, malaria, bronchitis, poison, jaundice, fire burns, purging and Jedi-Jedi using only one indigenous species each for their treatment in Ukum. The high number of indigenous plants used for healthcare management recorded in the study area implied that, Ukum in Benue State is diverse in terms of medicinal plants composition. This diversity can be seen in terms of the high number of the different species and different families recorded in the area. The identification of the indigenous plants was very difficult because most of the indigenous plants are not documented in Ukum and the indigenous

Figure 3. Methods of harvesting indigenous plants used for health care management in Ukum

Table 1. Sampling procedure and sample size.

S/N	WARDS	В	N(30%)	Х
1	Tsaav	33	10	10
2	Lumbuv	44	13	11
3	Uyam	34	10	10
4	Borikyo	40	12	12
5	Mbatian	43	13	13
6	Aterayange	33	10	9
7	Ituluv	25	8	8
8	Mbayenge	38	11	11
9	Mbazun	45	14	13
10	Total	335	101	97

Source: Field Survey, (2018).

B = Base line population of herbal practitioners in the study area

N = 30% of base line population of herbalist in the study area (Actual target for questionnaire distribution in the study area).

X = Number of questionnaires retrieved from the base line population of herbalist in the study area.

knowledge of their relevance is steadily being lost. Similarly, no plantation of any indigenous plants was seen anywhere in Ukum.

Methods of harvesting indigenous plants used for health care management in Ukum

The result on methods of harvesting indigenous plants used for healthcare management in the study

area showed that 15(15.5%) of the respondents used debarking as a method of harvesting medicinal plants; 14(14.4%) used cutting method; 15(15.5%) used plucking method; 12(12.3%) used digging method; 13(13.4%) used uprooting method; 9(9.3%) used lopping/girdling method; 9(9.3%) used tapping method and 10(10.3%) used the felling method to harvest medicinal plants (Figure 2).

The result on methods of harvesting indigenous plants for healthcare management in Ukum revealed that debarking were the most prominent methods of harvesting indigenous plants for healthcare management in the study area. It should be noted here that, debarking round a tree can kill such trees while forcefully plucking can damage the entire plants in question. Also, when roots of plants are dug up, the plant collapses especially when more than enough roots are removed. The findings agreed with the submission of Kalayu et al., (2015), that key to sustainable harvesting methods are management as the method employed will tell if the forest is been managed sustainably. Tapping on the other hand involves the removal of palm tops (as in palm tree) for the palms to produce exudates such as palm wine etc. This practice is capable of killing the palms. Similarly, Lopping/girdling destroys the branches of the plant as the top is cut down denying the plant of leaves and branches respectively. For sustainability, most of the methods employed by these herbalists are not advisable as they are

Table 2. Demographic characteristics of herbal practitioners in the study area.

VARIABLES	RESPONDENTS	PERCENTAGES
Sex		
Male	73	75.3
Female	24	24.7
Sub-Total	97	100
Age		
1-15	15	15.5
16-30	17	17.5
31-45	30	30.9
45 & above	35	36.1
Sub-Total	97	100
Educational Status		
Formal	17	17.5
Informal	80	82.5
Sub-Total	97	100
LGA of origin is Ukum		
Yes	97	100
No	0	0
Sub-Total	97	100
State of origin is Benue		
Yes	97	100
No	0	0
Sub-Total	97	100
Duration of stay in Ukum		
1-5	17	17.5
6-10	20	20.6
11 & above	60	61.9
Sub-Total	97	100
Household size		
1-3	27	27.8
4-8	40	41.3
9 & above	30	30.9
Sub-Total	97	100

Source: Field Survey, (2018)

capable of making the plant go into extinction. The findings corroborate Shomkegh et al. (2016), that Methods of medicinal plant harvesting in Gboko, Kwande and Guma were mostly destructive with negative implications on the availability and conservation of the species. The findings of the study also agreed with Ayodele, (2005) that, herbal practitioners mystify their trade aside the use of destructive harvesting methods.

Logistic binary nature of factors that influence the use of indigenous plants used for healthcare management in Ukum

The result on logistic regression on factors that

influenced the use of indigenous plants for healthcare management in Ukum gave a significant fit to the data judging from the X²value that was significant at P<0.05. the result indicated that, Extraction methods(EM) of the indigenous plants by the Herbal practitioners was the most significant factor that influenced the use of indigenous plants for healthcare management in Ukum with odds-ratio 5359.12 followed by dosage (DS) of the indigenous plants with odds-ratio 3523.51 and involvement of witchcraft (WC) with odd-ratio 253.69 respectively.

Similarly, Age (AG), Marital status (MS), Educational status (EDS), Sex (SEX), Household size (HHS), Monthly income (MI) and Monthly expenditure (ME) of the respondents with odd-ratio

Table 3. Compendium of indigenous plants used for healthcare management in Ukum.

S/N	Local Name	Botanical Name	Family	Form	Ailment treated	Part of Plant
1	Wavikyo	Mimosa pigra L.	Fabaceae	Shrub	Madness	Stem
	Ikyo	Uvaria chamae P. Beauv	Annonaceae	Shrub		Root
	Ityenger	Justicia shimperi Hochst	Acanthaceae	Herb		Leaves
2	Chia	Daniella oliveri [Rolfe] Hochst & Dalz	Ceasalpinaceae	Tree	Stroke	Leaves
	Kungureku	Ocimum gratissimum L.	Moringaceae	Herb		Leaves
	Наа	Khaya senegalensis [Desr] A. Juss	Meliaceae	Tree		Bark
	Ngaji	Ptericarpus erinaceus Poir.	Peridacaceae	Tree		Stem
	Giragba	Pericopsis laxiflora [Benth] V. Meeuw.	Papilionaceae	Tree		Bark
3	Kpine	Bridellia feruginea Benth	Euphorbiaceae	Tree	Swollen stomach	Root
	Ahur	Annona senegalensis	Annonaceae	Shrub		Root
	Jondough	Lagenaria siceraria [Mo1] Stand 1.	Cucurbitaceae	Tree		Root
	Kpikyeh	Psorospermum senegalensis Spach	Hypericaceae	Shrub	Swollen stomach	Leaves
4	Gbaaye	Prosopis Africana [Null. & Perr.] Taub	Fabaceae	Tree	Weak penis erection	Root
	Akinde	Ficus thonningii	Moraceae	Tree		Root
	Hwerbaa	Grewia tenax [Forssk.] Fiori	Malvaceae	Shrub		Root
5	Chiese	Trema orientalis [L.] U Blume	Ulmaceae	Tree	Infertility	Root
	Tur	Ficus sur Forssk	Moraceae	Tree		Root
	Ahur	Annona senegaensis Pers	Moraceae	Tree		Leaves
	Akinde	Ficus thonningii	Moraceae	Tree		Root
6	Kungureku	Ocmum gratisimum	Libiaceae	Herb	Eye pain	Leaves
	Gbaaye	Prosopis Africana	Fabaceae	Tree		Stem
7	Араара	Allophyllus afrcanus	Sapindaceae	Tree	Jedi jedi	Leaves
8	Ikyo	Uvaria chamae	Annonaceae	Herb		Root
	Gbur	Hannaa undulata [Gull .& Perr.]	Simaroubaceae	Tree	Stomach ache	Root
	Ahur	Annona senegalensis	Annonaceae	Tree		Root
	Alomade	Maytenus senegalensis [Lam.] Excell	Celastraceae	Shrub		Root
9	Ibua	Parinari curatellifollia Planch. Ex.	Chrysobalanceae	Tree	Yellow fever	Bark
	Tyembegh	Kigelia Africana [Lam.] Benth	Bignoniaceae	Herb		Bark
	Kpavande	Cochlospermum planchoni Hook. Ex.	Cochlospermaceae	Herb		Root
	Akinde	Ficus thonningii	Moraceae	Tree		Root

 Table 3. Continue.

10	Kuegh	Terminalia avicenioides Gull. & Perr	Combretaceae	Tree	Cough	Leaves
	Kungureku	Ocimum gratissimum	Libiaceae	Herb		Leaves
	Dedooko	Hibiscuss asper Hook. F	Malvaceae	Herb		Whole plant
	Ahur	Annona senegalensis	Annonaceae	Herb		Bark
11	Kungureku	Ocimum gratissimum	Libiaceae	Herb	Headache	Leaves
•••	Giragba	Pericopsis laxiflora	Papilionaceae	Tree	Ticuduone	Leaves
12	Nyihar	Pillostigma thonningii	Ceasalpinaceae	Tree	Purging	Bark
13	Giragba	Pericopsis laxiflora	Papillionaceae	Tree	Swellings	Bark
	Hwerza	Grewia venusta Fresen.	Malvaceae	Herb	- Curamings	Bark
	Tyemegh	Kigelia afrcana	Bignoniceae	Shrub		Stem
	Irkwar-to	Hymenocardia acida Tul	Euphorbiaceae	Shrub		Bark
14	Azizo	Fluegea Virosa [Roxb. Ex wild] Voigt	Euphorbiaceae	Herb	Typhoid	Whole plant
	Ahur	Annona senegalensis	Annonaceae	Tree		Stem
15	Наа	Khaya senegalensis	Meliaceae	Tree	Dis-location	Bark
	Mkem	Capsicum annuum	Solanaceae	Herb		Fruit
16	Ager	Cissus pulponenea Gull. & Perr.	Vitaceae	Shrub	Fire-burns	Leaves
17	Tur	Ficus sur	Moraceae	Tree	Blood clothing	Fruit
	Kpine	Bridelia ferrugena	Ephorbiaceae	Tree		Leaves
	Kuegh	Terminalia avicenioides	Combretacea	Tree		Root
	Liemen	Entada Africana Gull. & Perr.	Fabaceae	Shrub		Leaves
18	Hon	Ficus ingens [Miq.]	Moracea	Tree	Diarrhoea	Leaves
	Nune	Parking biglobosa	Fabaceae	Tree		Leaves
	Ahur	Anonna senegalensis	Fabaceae	Tree		Bark
19	Umanatumba	Stereospermum kuntianm Cham.	Bignoniaceae	Tree	Heart burn	Bark
20	Gbur	Haonna undulata [Gull. & Perr.]	Simaroubaceae	Tree	Jaundice	Root
21	Kpine	Bridelia ferruging	Euphorbiaceae	Tree	Ameobic dysentery	Bark
	Tur	Ficus sur	Moraceae	Tree		Bark
	Nune	Parking biglobosa	Fabaceae	Tree		Bark
22	Gbagbongon	Burkea fricana	Ceasalpinaceae	Tree	Poison	Bark
23	Наа	Khaya senegalensis	Meliaceae	Tree	Ulcer	Bark
	Bagbongon	Burkea Africana	Ceasalpinaceae	Tree		Bark
	Kumendur	Sterculia setigera Del.	Sterculiceae	Tree		Bark
	Agea viha	Tephrosia bracteolate	Ceasalpinceae	Tree		Bark
	Chiha	Danielli oliveri	Ceasalpinceae	Tree		Leaves
24	Sohonor	Mitragyna inermis	Rubiaceae	Tree	Diabetes	Bark
25	Gbaaye	Prosopis Africana	Fabaceae	Tree	Toothache	Leaves
26	Наа	Khaya senegalensis	Meliaceae	Tree	Prolonged labour in women	Leaves
	Irkwar	Hymenocardia acida	Euphorbiaceae	Shrub	WOITIGH	Leaves

Table 3. Continue.

	Irkwarto	Crossopteryx febrfuga [G. Don.]	Rubiaceae	Shrub		Leaves
	Kpine	Bridelia ferruginea	Euphorbiaceae	Tree		Root
27	Nyihar	Pilliostigma thonningii	Ceasalpinaceae	Tree	Bronchitis	Bark
28	Mho	Syzygium guineensis	Myrtaceae	Tree	Hookworm	Stem
	Ahur	Annona senegalensis	Annonaceae	Shrub		Leaves
29	Hon	Ficus ingens	Morataceae	Tree	Fracture	Root
	Ayaba	Musa spp	Musaceae	Shrub		Bark
30	Yongo	Cassia seiberiana DC	Facbaceae	Shrub	Malaria fever	Bark
31	Ikyo	Uvaria chamae	Annonaceae	Shrub	Ease of child birth	Bark
32	Tur	Ficus sur	Moraceae	Tree	Blood shortage	Leaves
33	Chiese	Trema orientalis	Ulmaceae	Shrub	Rheumatism	Leaves
34	Kyura	Sarcocephalus latifolius	Rubiaceae	Shrub	Fever	Leaves
	Ibohogh	Gardenia erubescens	Rubiaceae	Shrub		Leaves
35	Kyura	Sarcocephalus latifolius	Rubiaceae	Shrub	Itching	Leaves
36	Kpine	Bridelia ferrugena	Euphorbiaceae	Tree	Biharziasis	Bark
	Mkem	Capsicum frutescence	Solanaceae	Herb		Fruit
37	Gbaaye	Prosopis Africana	Fabaceae	Tree	Epigastric pain	Stem
38	Mkem	Capsicum frutescence	Solanaceae	Herb		Fruit

Field Survey, (2018).

NB: The numbering are based on diseases or ailments cured.

0.00 do not influenced the use of indigenous plants for healthcare management in Ukum.

Odd-ratio (Unit charge): Constant (1.31): DS (3523.51): AG (0.00): EDS (0.00): SEX (0.00): HHS (0.00): EM (5359.12): IWC (253.69): MI (0.00): ME (0.00)..... Equation 2 (Table 4).

From the result obtained on factors that influenced the use of indigenous plants for healthcare management by Herbal practitioners in Ukum indicated that, dosage of herbal medicine, extraction methods of herbal medicine and the involvement of witchcraft(mystification of the trade) are factors that influence the use of indigenous plants for healthcare management in the study area. The findings of the study corroborated Deeks 1996: Bland and Altman (2000), that the logistic model provides information on the consequence of one variable on the other (i.e.

consequences of the factors mentioned on the use of indigenous plants for healthcare management in the study area).

SUMMARY AND CONCLUSION

The following are the major findings of the study;

- A total of eighty-eight (88) indigenous plants used for the treatment of thirty eight (38) ailments were recorded.
- Eight (8) methods of harvesting indigenous plants for healthcare management were identified.
- Three factors that influenced the use of indigenous plants for healthcare management in Ukum were determined.

RECOMMENDATIONS

Based on the major findings of the study, the followings are recommended;

Herbal practitioners and hunters that are

Table 4. Logistic binary nature of factors that influence the use of indigenous plants for healthcare management in Ukum.

Dependent variable (FIUIP): Factors that influence use of indigenous plants for healthcare management in the study area (Presence =1: Absence =0)

study area (Fresence = 1. Absence = 0)					
Independent Variables	Coefficient	Odds ratio			
Whether dosage of herbal medicine influence use of indigenous plants for	8.17	3523.51*			
healthcare management					
Whether age of respondents influence use of indigenous plants for healthcare	-10.20	0.00ns			
management					
Whether marital status of respondents influence use of indigenous plants for healthcare management	-10.83	0.00ns			
Whether educational status of respondents influences use of indigenous plants for healthcare management	-6.87	0.00ns			
Whether sex of respondents influences use of indigenous plants for healthcare management	-2.97	0.00ns			
Whether household size of the respondents influence use of indigenous plants for healthcare management	-4.32	0.00ns			
Whether extraction method influence use of indigenous plants for healthcare management	8.53	5359.12*			
Whether involvement of witchcraft influence use of indigenous plants for healthcare management	5.53	253.69*			
Whether monthly income of the respondents influence use of indigenous plants for healthcare management	-9.35	0.00ns			
Whether monthly expenditure of the respondents influence use of indigenous plants for healthcare management	-50.15	0.00ns			
Model $X^2(df = 10) = 419.48^*$					

P<0.05

ns = Non- significant *= Significant

familiar with the names of indigenous plants used for healthcare management should disseminate such knowledge to their children, servants and other community members to prevent the loss of the knowledge.

- All the districts and wards in Ukum Local Government Area should be encouraged to grow indigenous plants that are used for healthcare management on their farms around their houses and as plantations to prevent them from extinction.
- Seedlings of indigenous plants can be raised in nurseries by Benue State Government and given free to Ukum Local Government Area communities for onward plantation on their farms and around their houses. If people of Ukum plant these seedlings on their farms and around their houses, the pressure on wild indigenous plants used for health care management will be reduced.
- Harvesting methods that uproot an entire plant or that takes more roots than necessary or

cutting of tree tops or palmtops should be avoided as this is capable of killing the entire plants.

- De-barking round a tree by herbal practitioners is an attempt to kill the plant and should be avoided. However, where de-barking is to be done, debark only one portion and allow the other portion which should be de-barked when the already debarked portion has regained its part.
- There should be a standardized dosage in traditional medicine. This should be followed by an improved extraction method that should not be mystified.

REFERENCES

Ancha PU, Oluwalana SA and Momoh S (2015). Economic valuation of medicinal plants used for traditional treatment of diabetes in Benue state, Nigeria. International Journal of Forestry and

- Horticulture (IJFH) Volume 1(2): 1-13; July September 2015, ISSN 2454-9487 www.arcjournals.org.
- Ayodele AE (2005). The Medicinally important leafy vegetables of South Western Nigeria. Conservation of Medicinally important leafy vegetable in Nigeria. http/www.SIU.EDU/-ebl/leaflet/Ayodele.htl.
- Benue State Ministry of Lands and Survey (2014). Map of Benue State Showing Study Area.
- Bland JM and Altman DG (2000). The odds ratio. British Medical Journal; 230, 1468.
- Deeks J (1996). Swots corner: What is an odds ratio? Banddolier books, 3 (3), Issue 25, 6-7.
- Diaw K, Blay D and Adu-Anning C (2002). Socio-Economic Survey of Forest fringe communities: Krokosua Hills forest reserve. A Report submitted to the forestry commission of Ghana.
- Fakeye TO, Adisa RO and Musa IE (2009). Attitude and use of herbal medicines among pregnant women in Nigeria. BMC Complement Altern. Med., 2009 Dec 31; 9:53. doi: 10.1186/1472-6882-9-53
- Gbile ZO, Ola-Adams BA, Soladoye MO (1999). Endangered Species of the Nigerian Flora. Nigerian Journal of Forestry; 29:33-37.
- Gbile ZO, Ola-Adams BA, Soladoye MO (2010). List of Rare Species of the Nigerian Flora. Research paper Forest 2010; 6(3):194-206.
- Igoli JO, Ogaji OG, Tor Anyiin TA and Igoli NP (2005). Traditional medicine practice among Igede people of Nigeria Part II. Scholars Research Library Archives of Applied Science Research, 7 (6):14-17.

- Ikyaagba ET, SO Jimoh and L Debisi (2009). Biodiversity and ethnobotanical potentials of plant species of University of Agriculture Makurdi Wildlife Park and Ikwe Games Reserve, Benue State, Nigeria. European Journal of Medicinal Plants 14(4): 1-14, 2016,
- Monier M Abd El-Ghani (2016). Traditional medicinal plants of Nigeria: An overview. Agriculture and Biology Journal of North America. ISSN print; 2151, ISSN Online; 2151- 7525. 7, 5. 220-222.
- Oladunmoye MK and Kehinde FY (2011). Ethnobotanical Survey of Medicinal Plants Used in Treating Viral Infections among Yoruba Tribe of South Western Nigeria. African Journal of Microbiology Research, 5: 2991-3004.
- Shomkegh SA, Mbakwe R and Dagba BI (2016). Utilization of wild plants for medicinal purposes in selected Tiv communities of Benue state, Nigeria: An ethnobotanical approach, European Journal of Medicinal Plants 14(4): 1-14, Article no. EJMP.26118 ISSN: 2231-0894, NLM ID: 101583475
- World Health Organization WHO, (2000). Promoting the role of Traditional Medicine in Health system; a strategy for the African Religion. WHO Regional office for Africa.