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The need to develop a robust Malaria Early Warning System (MEWS) in a right time-scale just for 
effective action, is growing in Nigeria due to the yearly recorded number of deaths from malaria 
disease. This paper uses two hierarchical evaluations technique to investigate the skill of VECTRI 
model in predicting malaria incidences in Nigeria. It evaluates the skill of three S2S models – China 
Meteorological Administration (CMA), European Centre for Medium-Range Weather Forecasts 
(ECMWF), and United Kingdom Meteorological Office (UKMO) in driving the VECTRI model. The 
simulated Entomological Inoculation Rate (EIR) from observation driven VECTRI is also evaluated with 
the simulated EIR from the three S2S models. The results show that VECTRI model driven by the 
observed station rainfall and temperature can simulate the hyper-endemic characteristics of malaria 
occurrence in Nigeria. This suggests that simulated EIR could be used as a measure of interpolation 
for reporting cases of malaria in Nigeria. The three S2S models used in driving the VECTRI-Model also 
reproduced the EIR that signifies the hyper-endemic nature of malaria cases in Nigeria, but with 
different characteristics over the climatological zones. Besides, the models also reproduced the inter-
annual variability of the malaria cases over each zone with different inherent biases. The simulated EIR 
from the S2S-driven-VECTRI increases from the Gulf of Guinea (GoG) to the Sahel following the 
population profiles. Notwithstanding the inherent biases, the prospect of using VECTRI-Malaria model 
as a MEWS driven by S2S prediction system is potentially strong and economically viable.   
 
Keywords:  S2S models, Malaria Early Warning System (MEWS), Entomological Inoculation Rate (EIR), 
VECTRI-model, Nigeria. 
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INTRODUCTION 
 
Malaria is hyper-endemic with stable transmission in 
Nigeria (Ofovwe and Eregie, 2001). It is considered 
as one of the main causes of death especially among 
children and pregnant women in sub-Sahara Africa 
(Snow et al., 2005). An estimated 300,000 deaths per 
year, including 11% of maternal mortality is caused 
by malaria (Angyo et al., 1996; NMCP, 2007). 
Besides the gross amount of death, studies have 
shown that malaria could impair the ability of people 
to work.  Alaba and Olumuyiwa (2006) revealed that 
malaria attacks can incapacitate individuals for an 
average of 10 to 14 days. Salihu and Sanni (2013) 
also documented that malaria illness often generate 
huge financial demands from cost of medical 
treatments leading to shortage of home food supply. 
The cost implications in terms of treatment, 
prevention and loss of man-hours from malaria 
illness in Nigeria have been estimated to be 132 
billion Naira (NGN) (Federal Ministry of Health 
(FMOH), 2007).   

Despite the huge sum spent in combating malaria 
and its obviously enormous socio-economy impacts 
in Nigeria, there has been no available tool in place 
to support pre-emptive disaster risk management 
actions. No system has been in place to give an early 
warning on the potential distribution and transmission 
of malaria in Nigeria. This is an important gap in 
epidemiological research that this work is set to fill. 
 
 
THEORETICAL UNDERPINNINGS 
 
In susceptible humans, malaria sickness is mainly 
caused by a parasite called plasmodium gambiae. 
Several of this parasite exists all over the tropical 
world, however, the most commonly found in Africa 
especially Nigeria, is the Plasmodium falciparum 
(World Malaria Report, 2018; Kar et al., 2014). 
Different studies (Githeko and Ndegwa, 2001; Jones 
and Morse, 2010) have shown that human beings are 
connected to the malaria parasite through a third 
party; "the mosquito". Mosquito acts as a vector 
through which the parasite is transmitted into 
humans. The female anopheles’ mosquito is the main 
vector of the malaria parasite (Jone and Morse, 2010; 
Tompkin and Ermert, 2013). This is because the 
female anopheles during pregnancy needs human 
blood to nourish her eggs with proteins and it is 
usually during the process that the malaria parasite 
is transmitted into humans (Detinova, 1962; Lindsay 

and Martens, 1998; Githeko et al., 2000; Bayoh and 
Lindsay, 2004). 

Several studies have shown that the survival of 
mosquito is largely influenced by environmental and 
climatic factors (Abiodun et al., 2016; Asare et al., 
2016, Asare and Amekudzi, 2017). In general, most 
atmospheric variables attributed to mosquito survival 
are Relative Humidity, Winds, Temperature, and 
Rainfall. However, of the four aforementioned 
variables, only temperature and Rainfall are mostly 
regarded. For instance, temperature aids the rate of 
mosquito larval development, the frequency of blood-
feeding by adult females on humans, and the time it 
takes the malaria parasites to mature into female 
mosquitoes. On the other hand, rainfall creates 
breeding sites for mosquitoes where eggs are laid.  It 
is therefore apparent that accurate real-time 
monitoring of temperature and rainfall conditions 
could provide useful information concerning malaria 
transmission in malaria early-warning systems 
(Tompkin and Ermert, 2013). 
  
Models for Malaria Early-Warning Systems 
(MEWS)  
 
Many malaria models that could account for malaria 
dynamics from climatic variables as early warning 
systems in epidemic regions have been formulated 
(Thomson et al., 2006; Ceccato et al., 2007). Despite 
the growing number of available models, only a few 
are actually dynamic and operationally in use. The 
two most commonly used dynamical malaria models 
in West Africa are the Liverpool Malaria Model (LMM) 
(Jones and Morse, 2010) and the VECtor borne 
disease community model of ICTP, Trieste (VECTRI) 
(Tompkin and Ermert, 2013). In this paper, the 
VECTRI malaria model was adopted. This is because 
the VECTRI model is the only freely available 
dynamical open-sourced malaria model. It also 
considers the impact of climate, surface hydrology, 
and population density on malaria distribution and 
can be used operationally.   

Studies have shown the predictive skill of the 
VECTRI model over different regions in Africa using 
both simulated and observed climate drivers: for 
instance, Tompkins and Ermert, (2013) drive the new 
VECTRI model using observed rainfall and 
temperature. Malaria cases from a wide range of 
location in Africa are compared with the 
Entomological Inoculation rate (EIR) as simulated by  
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Table 1. Summary of data used in this study. NA=Not Applicable. 
  

 Parameters  Source  No Ensemble  Period  

Station Observation  
Rainfall 
Temperature 
Malaria Cases  

NiMet  
Roll Back Malaria  

NA  1998 - 2017  

S2S-Reforecast (ECMWF) 
Rainfall  
Temperature(2m)  

ECMWF  10  1998 - 2017  

S2S-Reforecast (CMA)  
Rainfall  
Temperature(2m)  

ECMWF  3  1998 - 2017  

S2S-Reforecast (UKMO)  
Rainfall  
Temperature(2m)  

ECMWF  2  1998 - 2017  

 
 
 
the VECTRI model. Focusing on Bobo-Dioulasso in 
Eastern Africa, they found out that the model can 
adequately reproduce differences in transmission 
rates between rural and semi-urban areas in addition 
to the seasonality of malaria. Again, Tompkins and Di 
Giuseppe, (2015) in an Idealized model experiment 
investigated advanced malaria warning system by 
driving the VECTRI model with temperature and 
rainfall forecasts from monthly and seasonal 
simulated prediction system.  Although with inherent 
lags between rainy season and malaria transmission, 
a preliminary examination over the highland of 
Uganda and Kenya shows that the system has 
considerable skill in predicting the years during the 
last two decades in which documented highland 
outbreaks occurred. While Tompkins and Di 
Giuseppe, (2015) focused mainly on Eastern Africa, 
Asare and Amekudzi, (2017) evaluated the VECTRI 
model focusing particularly on Ghana in Western 
Africa. They used a modified VECTRI model to 
investigate spatio-temporal variability in malaria 
transmission. They found out that EIR simulated by 
the VECTRI model agreed and demonstrated 
appreciable skill in reproducing monthly variations in 
reported malaria cases.  

Despite the use of the VECTRI model in different 
parts of Africa by different studies, yet, none of these 
above-mentioned studies focused on the abilities of 
the VECTRI model in predicting malaria distribution 
particularly in Nigeria, the country with the highest 
number of malaria cases in Africa (World Malaria 
Report, 2018), Again, the aspect of using the VECTRI 
model as an early warning tool for malaria distribution 
within a forecast-range that is right for tangible 
decision making in Nigeria is unfortunately lacking. 
Several studies (Robertson and Wang 2012; Vitart et 
al, 2014; Lynch et al., 2014; White et al, 2015) have 

recently identified the Sub-Seasonal to Seasonal 
(S2S) time range to be the forecast-range that is just 
right for making effective decisions. As a new frontier 
in weather forecasting, the predictive skill of S2S 
models has also been carried out by different studies 
on different areas for different purposes (Lynch et al., 
2014; White et al, 2015, Olaniyan et al., 2018).  
Besides the aforementioned piece of facts on the skill 
of the VECTRI model in different regions using 
different methods in Africa, some fundamental 
questions are yet to be answered based on the use 
of VECTRI model in Nigeria. Firstly, how skilful is the  
VECTRI Malaria model in predicting malaria 
occurrences in Nigeria from the simulated 
Entomological Inoculation Rate (EIR); Secondly how 
skilful can the rainfall and temperature forecast from 
S2S models be in driving VECTRI model; and lastly 
what is the significant of  improvements in using 
multi-model ensembles prediction system in driving 
VECTRI model. In this respect, this study aims at 
addressing these concerns to be able to have a 
robust system for Malaria Early Warning at S2S time-
scale using the VECTRI model. 
 
 
DATASETS, METHODS AND DESCRIPTION OF 
MODELS 
 
Dataset and methods 
 
This study utilized three sets of data from with time 
scale spanning from 1998 to 2017 (Table 1). The first 
two datasets are used to drive the VECTRI-model. 
They are: 
1; observed daily temperature and rainfall datasets 
retrieved from the archive of the Nigerian 
Meteorological                    Agency                 (NiMet:  
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Figure 1. Maps showing (a) locations of synoptic stations used in this study (source: Olaniyan et al. 2018); (b) three climatological zones in Nigeria in (green 
boxess. 
 
 
 

http://www.nimet.gov.ng) as shown in Figure 
1a.  
2; temperature and rainfall from three global 
S2S reforecast datasets. These are from the 
CMA-S2S ensemble hind-casts produced by 
the BCC-CPSv1, the ECMWF-S2S ensemble 
hind-casts produced by the VarEPS and the 
UKMO-S2S ensemble hind-casts produced by 

the GloSea4. They were all retrieved from the 
ECMWF-S2S database, as supported by the 
World Meteorological Organization (WMO) 
through the World Weather Research 
Program (WWRP) and World Climate 
Research Program (WCRP).  
3; the confirmed clinically reported malaria 
cases data are obtained from the annual and 

monthly records of the "ROLL BACK 
MALARIA" program in Nigeria. 
Twenty (20)-years datasets were obtained 
from the annual record (from 1998 to 2017) 
and 5 years (2013 to 2017) from the monthly 
records. However, based on data availability 
and the subject to sub-seasonal time scale 
being used in this paper, emphasis was laid on  
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Figure 2. Schematic of the forecast-system setup, Adapted from 
Tompkins and Giuseppe, (2015).   

 
 
 
discussion of the results from the recent 5-years 
monthly analysis. Two hierarchical evaluations as 
explained in Figure 2 were carried out in the study. 
Firstly, the reported malaria cases were used to 
evaluate the skill of VECTRI model using the 
simulated EIR. Although, VECTRI model simulates 
array of malaria dynamics (Tompkins and Ermert, 
2013; Asare and Amekudzi, 2017) however the EIR 
given as mosquito bite per person per day (b/p/d) has 
been widely used as malaria variable that could be 
compared with actual cases of malaria occurrence 
(Jones and Morse, 2010; Tompkins and Ermert, 
2013; Aju-Ameh et al., 2016; Asare and Amekudzi, 
2017). Secondly, we evaluate the skill of the S2S 
models in driving the VECTRI model. Here, the 
simulated EIR from observed driven VECTRI was 
evaluated with the simulated EIR from the three S2S 
models used. To further justifies the performance of 
the S2S models, the forecast rainfall and temperature 
from the S2S models are evaluated using the 
observed rainfall and temperature datasets from 
NiMet.  

Statistical measures, in the form of Taylor diagrams  
(Taylor, 2001), were used to determine the monthly 

and annual variability of all parameters. 
Quantitatively, correlation coefficients (r) and the 
normalized standard deviation (NSD) between all the 
S2S-models (their ensemble members and the 

ensemble mean) with reference to the observations 
(EIR) were also determined. Furthermore, some 
measures of statistical significance, such as p-value 
(Mason, 2008), were performed for the correlation 
skills that were determined in this study. The level of 
significance was estimated, where p-value = 0.05, for 
a two-tailed experiment to decide whatever the linear 
association that may exist between the correlated 
parameters are plausible. Nigeria is divided into 3 
climatological zones based on common climatology 
(Figure 1b).  
 
 
DESCRIPTIONS OF MODELS USED IN THIS 
STUDY 
 
Brief descriptions of VECTRI model  
 
VECTRI is a grid-cell distributed open source 
dynamical model which simulates malaria 
transmission dynamics (Tompkins et al., 2013). 
VECTRI model was developed at the International 
Center for Theoretical Physics. The model runs with 
a daily integration time-step. The spatial resolution of 
the model is flexible as it depends on the resolution 
of the driving climate data; it ranges from a single 
location to a regional scale of 10 to 100 km. The 
model  explicitly  resolves  the  growth  stages  of  the  



 
 
 
 
egg-larvae-pupa cycle in addition to the gonotrophic 
and the sporogonic cycles using an array of bins for 
each process (Tompkins and Ermert, 2013; Asare 
and Amekudzi, 2017). This process continues to 
advance within the boxes once temperatures are 
within the range for growth.  

One unique feature of the VECTRI model is its 
ability to incorporate human population that 
influences vector–host interaction dynamics in 
estimating biting rates. Therefore, the Entomological 
Inoculation Rate (EIR) simulated by the model 
reduces with increasing population density 
(Tompkins and Ermert, 2013). The model also 
includes a simple hydrological scheme. Modified by 
Asare et al. (2016), the scheme indirectly controls 
habitat productivity and adult density as larvae are 
killed once the habitat dries out. In addition, the 
scheme is also able to account for the negative effect 
of high intensity rainfall on habitat productivity 
through flushing away of larvae (Paaijmans et al., 
2007). Detailed description of the VECTRI model is 
available in Tompkins and Ermert (2013) and Asare 
et al. (2016). 
 
Brief descriptions of the S2S models used in this 
study 
 
The three S2S models used in this study, is based on 
different model configurations, from three different 
global prediction centres. These global prediction 
centres are the China Meteorological Administration 
(CMA), European Centre for Medium-Range 
Weather Forecasts (ECMWF), and United Kingdom 
Meteorological Office (UKMO). The earliest 
mentioned centre utilizes the Beijing Climate Center 
Climate Prediction System (BCC-CPS-S2Sv1) 
version 1. The configuration is based on lagged 
average forecasting (LAF) method using a fully-
coupled BCC Climate System Model BCC-CSM1.2. 
The S2S Forecasts are running every day since 1 
January 1994 and end with a 60-day integration. 
Each forecast consists of 4 LAF ensemble members, 
which are initialized at 00 UTC of the first forecast day 
(Wu et al., 2014; Li et al., 2017). ECMWF utilizes the 
integrated forecasting System (IFS) version 41r1. 
The   ECMWF-S2S   ensemble   hind-casts Variable 
Resolution Ensemble Prediction System (VarEPS) is 
based on IFS version 41r1. It runs on an octahedral 
grid with 51 members ensemble (Buizza et al., 2006; 
Vitart et al., 2012). Operationally, the system is 
composed typically of coupled land, ocean and 
atmosphere components. The system provides daily  
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ensemble forecasts of a wide variety of atmospheric 
variables (e.g. precipitation, 2m temperature, sea 
surface temperature (SST), horizontal components of 
wind flow at 700 hPa level, mean sea level pressure 
(MSLP), dew point temperatures, etc.) with daily and 
sub-daily temporal resolution of the order of 6 hours. 
More details on the ECMWF-S2S are available at: 
http://s2sprediction.net/. S2S forecasting system 
from the UKMO prediction centre made use of the 
GloSea4 modeling technique. The technique is an 
ensemble prediction system that uses the HadGEM3 
coupled GCM to model interactions across all 
physical components of the climate system: ocean, 
atmosphere, land surface and sea ice (Arribas et al., 
2011). Summaries of the above descriptions are 
presented in Table 2. 
 
 
RESULTS AND DISCUSSION 
 
Malaria cases  
 
Malaria occurrence is an all year-round phenomenon 
(Figures 3 - 5). The characteristics of occurrences 
may differ from region to region; however, the 
number of malaria cases increases from the Gulf of 
Guinea (GoG) to the Sahel. Occurrence of malaria is 
in concomitance with rainfall characteristics over the 
three regions. Studies have shown that rainfall 
characteristics over Nigeria follows the annual 
oscillation of the sun and it is controlled by the 
advection of moisture from GoG in the low levels of 
the atmosphere (e.g. Sultan and Janicot, 2003; 
Couvreux et al., 2010; Lawal et al., 2016; Olaniyan et 
al., 2018). The increase in malaria occurrence 
northwards implies that the number of malaria cases 
increases with increasing population. This is in line 
with different studies such as Martens et al. (1999); 
Marten and Hall (2000), and Tompkins and Di 
Giuseppe (2015). As shown in Figures 3a, 4a and 5a, 
the occurrence of malaria over both the GoG and the 
Savannah is mostly bi-modal with a uni-modal 
characteristic over the Sahel. The peak of malaria 
occurrence generally coincides with the peak of the 
rainfall. However, Figure 5a showed a month lag 
between the peak of the rainfall and the peak of 
malaria occurrence over the Sahel. The assumption 
here, as suggested by suggested by Berg et al. 
(2017), is that the lag may be as a result of the 
retention capacity of soil moisture, which studies 
have shown to have a feedback effect on rainfall 
variability. On all the regions as shown in Figures 3b, 
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Table 2. Summary of VECTRI Model Constant. 
 

Symbol  Value Units Description  

E + I  250 mm day−1 Total evaporation and infiltration losses  

KL,Jepson  90.9 K day Larvae growth degree days  

KL,Bayoh  200 K day Larvae growth degree days  

Kgono  37.1 K day Gonotrophic cycle degree days  

Ksporo  111 K day Sporogonic cycle degree days  

Kflush,∞  0.4  Larvae flushing factor for infinite rain rate  

Kw  1 m−1 Pond growth rate factor  

Kmar1,0  0.45  Constant of Martens I vector survival scheme  

Kmar1,1  0.054 °C−1 Constant of Martens I vector survival scheme  

Kmar1,2  -0.0016 °C−2 Constant of Martens I vector survival scheme  

ML,max  300 mg m−2 Carrying capacity of water bodies  

Negg  120  Number of eggs per batch that result in female 
vectors  

PL,surv0  0.825  Larvae base daily survival rate  

Phv  0.2  Probability of transmission from infective  

host to vector during single bloodmeal  

Pvh  0.3  Probability of transmission from infective  

vector to host during single bloodmeal  

Twat  2 K Pond water offset from air temperature  

TL,min  16 °C Minimum Twat for larvae development  

TL,max  38 °C Maximum Twat for larvae development  

Tgono,min  7.7 °C Minimum T2m for egg development  

Tsporo,min  16 °C Minimum T2m for sporogonic cycle  

τflush  50 mm day−1 Larvae-flushing rainfall e-folding factor  

wmax  0.04  Maximum temporary pond fraction in cell  

 
Source: Tomkins and Ernest 2013. 

 
 
4b and 5b the peak of malaria occurrence happens 
two months after the temperature maximum. 
 
    
VARIABILITY DISTRIBUTION OF NIGERIAN 
RAINFALL AND TEMPERATURE   
 
Running VECTRI-Model with observed datasets  
 
The VECTRI  model  driven  by  the  observed station  

rainfall and temperature is able to simulate the hyper 
endemic characteristics of malaria occurrence in 
Nigeria. This is in conformity with other studies that 
show that malaria occurs when the EIR is more than 
0.01 (e.g., Jones and Morse, 2010; Aju-Ameh et al., 
2016; Asare and Amekudzi, 2017). The simulated 
EIR follows the monthly evolution of the monsoon 
rainfall. This implies that VECTRI simulated EIR 
could be interpolated with reported cases of malaria 
in  GoG  and  Savannah  where  the  peak  of  malaria  
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Figure 3. Monthly variability of malaria cases (in black) over the Gulf of Guinea with (a), rainfall, (b), mean temperature (oC) and (c) simulated 
EIR(red) from VECTRI model; d is the standardized anomaly of  annual variability of malaria cases (blue bar) and  simulated EIR(red bar). 

 
 
 
occurrence coincides with the peak of the 
simulated EIR (Figures 3c, 4c and 5c). 
However, the peak of the simulated EIR over 
the Sahel occurs a month before the peak of 

malaria occurrence. The model also generally 
captured the inter-annual variability of the 
malaria cases over each region with different 
inherent biases. VECTRI is able to capture the 

yearly anomalies over GoG except for 1998, 
2008 and 2016 (Figure 3d). It deviates over 
the Savannah in 1998 1999 2003 2004 2009 
2010  and  2011  and over  the  Sahel  in 1998,  
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Figure 4. Monthly variability of malaria cases (in black) over Savannah with (a), rainfall, (b), mean temperature (oC) and (c) simulated 
EIR (red) from VECTRI model; d is the standardized anomaly of annual variability of malaria cases (blue bar) and simulated EIR (red 
bar). 

 
 
2007, 2008, 2009 and 2014 (Figures 4d and 
5d). 
 
Running VECTRI-Model with datasets from 
S2S-Models   
 
The S2S models used in driving the VECTRI- 

Model reproduced the EIR with different 
characteristics over different regions. For 
instance, the EIR simulated from the S2S-
driven-VECTRI increases from the GoG to the 
Sahel following the population profiles 
(Figures 6 - 8). The EIR is also greater than 
0.01/b/p/m signifying the hyper-endemic 

characteristics of malaria occurrence in 
Nigeria. Evidence of uniqueness of the 
variability of the EIR from the S2S-driven-
VECTRI is depicted in Figures 6(b, d, and f), 7 
(b, d, and f) and 8(b, d, and f). For instance, 
the simulated EIR from the UKMO displayed 
good  variability  with  the  observed  over  the  
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Figure 5. Monthly variability of malaria cases (in black) over Sahel with (a), rainfall, (b), mean temperature (oC) and (c) simulated EIR(red) from 
VECTRI model; d is the standardized anomaly of  annual variability of malaria cases (blue bar) and  simulated EIR(red bar). 

 

 

 
three regions with NSD between 0.8-1.0. On 
the other hand, the variability from the 
ECMWF-EIR improved over the Savannah 

and the Sahel with NSD of about 0.8.  Here, 
overall, the region the variability of simulated 
CMA-EIR is poor. Additionally, the direct 

relationship between the all S2S simulated 
EIR and the observation is strong but unique 
in different regions.
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Figure 6. Monthly variability of VECTRI simulated EIR over the GOG by S2S -model Forecasts  
from  CMA ensemble  mean  (green-lines), the ECMWF ensemble mean (red-line), the UK-
METOFFICE ensemble mean (blue-line) ,all ensemble members(shaded) and  by observation;  
(B, D, F) Taylor diagrams showing the normalized standard deviations and the correlation 
coefficients of CMA(green) , ECMWF(red) and UK-METOFFICE(blue) S2S ensemble simulations 
with observation respectfully (triangle--ensemble members), ensemble mean—star and 
(observation)—black semi-circle 

 
 
For instance, all the ensemble members and 
ensemble means of both the CMA-EIR and ECMWF-

EIR improve correlation skill from the GOG to the 
Sahel with values ranging from 0.7 - 0.85. Meanwhile,  
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Figure 7. Monthly variability of VECTRI simulated EIR over the Savannah by S2S -model 
Forecasts  from  CMA ensemble  mean  (green-lines), the ECMWF ensemble mean (red-
line), the UK-METOFFICE ensemble mean (blue-line) ,all ensemble members(shaded) and  
by observation;  (B, D, F) Taylor diagrams showing the normalized standard deviations and 
the correlation coefficients of CMA(green) , ECMWF(red) and UK-METOFFICE(blue) S2S 
ensemble simulations with observation respectfully (triangle--ensemble members), 
ensemble mean—star and (observation)—black semi-circle. 

 
 
 
the UMKO-EIR maintained very strong correlation 
skill of approximately 0.9 overall the regions from all 

the ensemble members the mean. The different 
performance of each of the S2S- driven-VECTRI on  
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Figure 8. Monthly variability of VECTRI simulated EIR over the Sahel by S2S -model 
Forecasts  from  CMA ensemble  mean  (green-lines), the ECMWF ensemble mean (red-
line), the UK-METOFFICE ensemble mean (blue-line) ,all ensemble members(shaded) 
and  by observation;  (B, D, F) Taylor diagrams showing the normalized standard 
deviations and the correlation coefficients of CMA(green) , ECMWF(red) and UK-
METOFFICE(blue) S2S ensemble simulations with observation respectfully (triangle--
ensemble members), ensemble mean—star and (observation)—black semi-circle. 

 
 
 
different regions may not be unconnected with the 
predictive skill of the S2S models in simulating rainfall 
and temperature over these regions. For instance, in 

terms of rainfall all the three models can reproduce 
the climatology of monsoon evolution and 
characteristics over the GoG, the Savannah and the  
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Figure 9. Monthly Climatology of Rainfall and  temperature  over the Gulf of Guinea  by S2S -model Forecasts (A,C,E,G,I,K) 
from  CMA ensemble  mean  (green-lines), the ECMWF ensemble mean (red-line), the UKMO ensemble mean (blue-line) , 
all models ensemble members(shaded) and  by observation (Black line);  (B, D, F,H,J,L) Taylor diagrams showing the 
normalized standard deviations and the correlation coefficients of CMA(green) , ECMWF(red) and UK-METOFFICE(blue) 
S2S ensemble simulations with observation respectfully (triangle--ensemble members), ensemble mean—star and 
(observation)—black semi-circle. 

 
 
 
Sahel.  As shown in Figures 9 (a, e and j), 
10(a, e and j) and 11 (a, e and j), this is 
because all the models reproduced the bi-

modal rainfall pattern over the GoG and the 
uni-modal rainfall peculiar to the Savannah 
and Sahel areas.  With inherent differences, 

each of the models also exhibits unique 
characteristics over each of the regions 
considered. 
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Figure 10. Monthly Climatology of Rainfall and  temperature  over the Savannah by S2S -model Forecasts 
(A,C,E,G,I,K) from  CMA ensemble  mean  (green-lines), the ECMWF ensemble mean (red-line), the UKMO 
ensemble mean (blue-line) , all models ensemble members(shaded) and  by observation (Black line);  (B, D, 
F,H,J,L) Taylor diagrams showing the normalized standard deviations and the correlation coefficients of 
CMA(green) , ECMWF(red) and UK-METOFFICE(blue) S2S ensemble simulations with observation respectfully 
(triangle--ensemble members), ensemble mean—star and (observation)—black semi-circle. 

 
 
 
For instance, the ECMWF model showed a 
degree of consistency in variability and 
correlation skill over all the regions as depicted 
in Figures 9(e and f) 10(e and f) and 11(e and 

f). The NSD over the entire region is almost 
1.0 implying no significant changes from the 
observation. 

The  skill  of  producing  monthly  quantitative  

rainfall amount and the correlation skill 
improves from the GoG to the Sahel with a 
mean correlation of 0.95. The ECMWF model 
overestimates   the   monthly   rainfall  amount 

 

 
 

CMA a b c d 

R
ai

n
fa

ll
 (

m
m

) 
 

T
em

p
er

at
u

re
 (

o
C

) 

R
ai

n
fa

ll
 (

m
m

) 
 

R
ai

n
fa

ll
 (

m
m

) 
 

T
em

p
er

at
u

re
 (

o
C

) 
T

em
p

er
at

u
re

 (
o
C

) 

e 

i 
j k 

l 

h 
g f ECMWF 

UKMO 



Olaniyan et al. 575 
 
 
 

 
 
Figure 11. Monthly Climatology of Rainfall and  temperature  over the Sahel  by S2S -model Forecasts (A,C,E,G,I,K) from  
CMA ensemble  mean  (green-lines), the ECMWF ensemble mean (red-line), the UKMO ensemble mean (blue-line) , all 
models ensemble members(shaded) and  by observation (Black line);  (B, D, F,H,J,L) Taylor diagrams showing the 
normalized standard deviations and the correlation coefficients of CMA(green) , ECMWF(red) and UK-METOFFICE(blue) 
S2S ensemble simulations with observation respectfully (triangle--ensemble members), ensemble mean—star and 
(observation)—black semi-circle. 

 
 
before and after the peak of the monsoon but 
underestimate the rainfall during August the 
peak of the monsoon over the GoG (Figure 

9c). Similarly, over the Sahel, the agreement 
between the model’s ensemble members and 
the ensemble mean in terms of correlation 

surpasses that of GoG (Figures 10(e) and 
11(e)). 

The      UKMO     also    show    very      strong  
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correlation skill in producing the climatology of 
monthly variability in Nigeria. Its correlation value in 
each region is approximately 0.9. However, it has 
lower variability and consistent biases in the entire 
region (Figures 9(i and j), 10(i and j) and 11 (i and j)). 
CMA model also have relatively strong correlation 
skill of about 0.7 in all the regions in term of 
simulating monthly rainfall, it is however weak in term 
of the variability, NSD = 0.5 (Figures 9 (a and b), 10(a 
and b) and 11(a and b)). Again, the ability of the CMA 
model to reliably forecast quantitative precipitation 
especially during the peak of the summer monsoon 
is weak. The significant test of all the correlation 
values from all the ensemble members and their 
means on all the regions are statistically significant 
as the p values are << 0.005. In addition to the ability 
of the models to reproduce rainfall climatology of 
each climatological zone (Figures 9 - 11(a, b, e, f, i 
and j)), ECMWF model does not deviate significantly 
from observation in terms of variability (panels h of 
Figures 9 – 11). However, the correlation skill for 
temperature reverses. This implies the correlation of 
all the ensemble members and the mean is strongest 
over the GoG and weakest over the Sahel. The 
UKMO also show very strong correlation skill in 
producing the climatology of monthly variability of 
temperature in Nigeria but with lower variability and 
consistent biases in all the region (panels k and l of 
Figures 9 – 11). In comparison to ECMWF, the 
UKMO correlation skill in terms of temperature is on 
the average with the weakest skill over the 
Savannah. While the CMA may have relatively strong 
correlation about 0.7 on all the regions in term of 
simulating monthly rainfall (panels a and b of Figures 
9 – 11), temperature variability reproduced by CMA 
is however lower in comparisons to observation; NSD 
in the regions is about 0.5 (panels c and d of Figures 
9 – 11). Again, the significant test of all the correlation 
values from all the ensemble members and their 
means on all the regions are statistically significant 
as the p values are << 0.005.   
 
 
CONCLUSION 
 
Malaria continues to be one of the biggest 
contributors to the global disease burden in terms of 
death, financial burden and suffering. This study uses 
a two hierarchical evaluations technique to 
investigate the skill of VECTRI model using the 
simulated EIR and to evaluate the skill of the S2S 
models  in  driving the  VECTRI  model.  The  results  

 
 
 
 
show that VECTRI model driven from observed 
station rainfall and temperature is able to simulate the 
hyper endemic characteristics of malaria occurrence 
in Nigeria. It suggests that simulated EIR could be 
used as a measure of interpolation for reporting 
cases of malaria in Nigeria. In addition, the model 
generally captured the inter-annual variability of the 
malaria cases over each region with different 
biases. Furthermore, all the three S2S models used 
in driving the VECTRI-Model reproduced the EIR that 
signifies the hyper-endemic nature of malaria in 
Nigeria; though with different characteristics over 
different regions. The simulated EIR from the S2S-
driven-VECTRI increases from GoG to the Sahel 
following the population profiles. In addition, all the 
ensemble members and ensemble means of both the 
CMA-EIR and ECMWF-EIR improve correlation skill 
from the GOG to Sahel with values ranging from 0.7 
- 0.85; with the strongest correlation skill of 
approximately 0.9 from UMKO-EIR over all the 
regions from all the ensemble members and the 
mean. The inherent differences in the performance of 
each of the S2S-driven-VECTRI on different regions 
may not be strongly connected with the predictive 
skill of the S2S models in simulating rainfall and 
temperature over these regions as earlier discussed. 
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